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1 Strategy, Information and Game

1.1 Game and Assumptions

Definition 1.1 (Common knowledge vs. Mutual knowledge)
1. A property Y is said to be mutual knowledge if all players know Y (but don’t

necessarily know that others know it).

2. A property Y is common knowledge if everyone knows Y , everyone knows that

everyone knows Y , everyone knows that everyone know that everyone knows Y ,

..., ad infinitum. Clearly, common knowledge implies mutual knowledge but not

vice-versa.

Definition 1.2 (Normal (Strategic) Form of Game)
1. Player Set, e.g. N = {1, 2, 3, 4, · · · , n}.

2. Set of strategy profiles, e.g.
∏

j∈N Sj , where Sj is the strategy set for player j.

3. Payoff function for each player: Ui (s1, s2, . . . , sn).

1.2 Rationality, Dominance and Best Response

Definition 1.3 (Set of k-rationalizable strategies (Li, 2022))
Set Σ0

i = Σi, and recursively define

Σn
i = {σi ∈ Σn−1

i : ∃σ−i ∈ ×j ̸=i

(
Σ̂n−1
j

)
s.t.Ui (σi, σ−i) ≥ Ui

(
σ′
i, σ−i

)
∀σ′

i ∈ Σn−1
i },

where Σ̂n−1
j is the convex hull of Σn−1

j .

Note on Convex hull Here convex full can capture mixed strategies.

Note on Interpretation (Kartik, 2009) Here σi ∈
∑

i is a k-rationalizable strategy (k ≥ 2)for

player i if it is a best response to some strategy profile σ−i ∈
∑

−i such that each σi is (k-1)-

rationalizable for player j ̸= i.



1 Strategy, Information and Game

Definition 1.4 (Set of rationalizable strategies (Li, 2022))
The set of rationalizable strategies for player i is

Ri = ∩∞
n=0Σ

n
i .

Note on Interpretation (Kartik, 2009) Here σi ∈
∑

i is rationalizable for player i if it is

k-rationalizable for all k ≥ 1.

Definition 1.5 (Rational player and Rationalizable strategy profile (Li, 2022))
1. A rational player will not play a strategy that is never a best response.

2. The set of strategies that survive iterated elimination of strategies that are never a

best response are rationalizable.

3. A strategy profile is rationalizable if the strategy prescribed for each player is

rationalizable.

Theorem 1.1
The set of rationalizable strategies Ri for each player i is nonempty and contains at least

one pure strategy. Further each σi ∈ Ri is a best response to an element of ×j ̸=i convex

hull (Rj).

Note on Nonempty Each period you compare all strategies to find best responses, you can

always find at least one strategy.

Definition 1.6 (Strict and Weak Dominance)
1. A strategy si is strictly dominated for player i if there exists σ′

i ∈
∑

i such that

ui(si, s−i) < ui(σ
′
i, s−i) ∀s−i ∈ S−i.

2. A strategy si is weakly dominated by a′i if ui(si, s−i) ≤ ui(σ
′
i, s−i) for ∀s−i ∈ S−i,

and the inequality is strict for some s−i.

Definition 1.7 (Best response mapping / correspondence)
Given an n-player game, player i’s best response (mapping: one to multiple) to the

strategies x−i of the other players is the strategy x∗i that maximizes players i’s payoff

πi(xi, x−i):

x∗i (x−i) = argmax
xi

πi(xi, x−i).

When the best response is not unique, we use the definition of correspondence, i.e. n → n.

Note on BR Best response may not be unique.
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2 Solution Concept 1: Minmax Theorem in Strictly Competitive Games (Felix, 2022, Lec. 8)

Lemma 1.1 (Derivative of BR)

Given payoff ui(qi, x) and best response ri(qj) :
∂ui(r(qj),qj)

∂qi
= 0, then the derivative is

∂2ui
∂q2i

∂r

∂qj
+

∂2ui
∂qi∂qj

= 0 → dr

dqj
= − ∂2ui

∂qi∂qj
/
∂2ui
∂q2i

1.3 From Pure Strategy to Mixed Strategy

Note that in business area, we focus on pure strategy applications. Thus, we omit further

discussions of mixed strategy in later sections.

Definition 1.8 (Pure or Mixed Strategy)
1. A pure strategy is the action which a player chooses for sure.

2. A mixed strategy σi of player i is a probability distribution over pure strategies.

The set of mixed strategies is denoted by Σi (Σ ≡ ×i∈NΣi). The expected payoff is

Ui(σ) =
∑
a∈A

(
ΠN

j=1σj (aj)
)
ui(a) (1)

=
∑
ai∈Ai

[σi(ai)Ui(ai, σ−i)] (2)

Note on Mixed strategy Here randomization is independent, and we relax this assumption in

correlated equilibrium.

Note on Expected payoff (1) captures the expected payoff via summing all weighted expected

payoff given strategy profiles. (2) captures the expected payoff via summing all weighted expected

payoff given strategies with nonnegative probability.

2 Solution Concept 1: Minmax Theorem in Strictly Competitive
Games (Felix, 2022, Lec. 8)

Definition 2.1 (Strictly competitive game)
A two-player, strictly competitive game is a two-player game with the property that, for

every two strategy profiles s and s′,

u1(s) ≥ u1
(
s′
)

and u2(s) ≤ u2
(
s′
)

Note on Special case Constant-sum games are special cases of strictly competitive games, and

zero-sum games are special cases of constant-sum games.

Definition 2.2 (Maxmin strategy and Maxmin value)
The maxmin strategy for player i is a strategy that maximize i’s worst-case payoff

argmax
si

min
s−i

ui (s1, s2)
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3 Solution Concept 2: Iterated Strict Dominance Equilibrium

and the maxmin value for player i is the payoff guaranteed by the maxmin strategy.

max
si

min
s−i

ui (s1, s2)

Definition 2.3 (Minmax strategy and Minmax value)
The minmax strategy for player i is a strategy that minimizes the other player−i’s best-case

payoff

argmin
si

max
s−i

u−i (s1, s2)

and the minmax value for player i is the payoff achieved by the minmax strategy.

min
si

max
s−i

u−i (s1, s2)

Theorem 2.1 (Minmax theorem (von Neumann))
In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a

payoff that is equal to both his maxmin value and his minmax value.

Remark In geometry, it means a saddle point.

3 Solution Concept 2: Iterated Strict Dominance Equilibrium

These strategy profiles are usually derived via iterated elimination of strictly dominated

strategies (IESDS).

Definition 3.1 (iterated strict dominance equilibrium)
Given strong rationality and common knowledge assumption, repeatedly applying strict

dominance to derive this equilibrium.

Note on Uniqueness If we do elimination of strictly dominated strategies, then the equilibrium

is unique, otherwise the uniqueness can not be ensured.

Note on Condition Some (very few though) games can be “solved” by iterated elimination of

strictly dominated strategies.

Note on Order independence An important feature of iterated elimination of strictly dominated

strategies is that the order of the elimination has no effect on the set of strategies that remain in

the end.

Note on Weakly dominated A strategy that is weakly dominated cannot be ruled out based

only on principles of rationality. Iterated elimination of weakly dominated strategies is order

dependent, for example,
L C R

T 1, 1 1, 1 0, 0

B 0, 0 1, 2 1, 2

.
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3 Solution Concept 2: Iterated Strict Dominance Equilibrium

Note on Mixed strategy in IESDS
1. If there is a mixed strategy σ′

i dominate all pure strategies, then it dominate all mixed

strategies.

Since mixed strategy is convex combination of pure strategy.

2. A pure strategy may be dominated by a mixed strategy, and vice versa.

This property is very useful to prove some mixed strategies is dominated.

For example, 0.5T+0.5M is dominated by B, while T and M are not dominated by B.

Using this property, we con show that all mixed strategies of T and M is dominated, by

the new strategy we construct. For example, for 0.9T+0.1M=0.8T+0.2*(0.5T+0.5M),

we does know whether the former is dominated, but the latter is dominated by

0.8T+0.2*B.
L R

T 3 0

M 0 3

B 2 2

For example, there are no strictly dominated pure strategies for player 1 nor for

player 2. However, if player 1 mixes between B (with prob q) and C (with prob

1-q), he obtains an expected utility that exceeds that from selecting F. Thus we can

eliminate F from the matrix, since it is strictly dominated by a randomization between

B and C.
F C B

F 0, 5 2, 3 2, 3

C(1− q) 2, 3 0, 5 3, 2

B(q) 5, 0 3, 2 2, 3

.

3. A mixed strategy that assigns positive probability to a (strictly) dominated pure strategy

must be (strictly) dominated.

This property is very useful to eliminate dominated strategies and get a smaller game.

Proposition 3.1 (iterated dominance equilibrium and NE (Gibbons, 1992, p. 12))
1. In the n-player normal-form game G = {S1, ..., Sn;u1, ..., un}, if iterated elimi-

nation of strictly dominated strategies eliminates all but the strategies (s∗1, ..., s∗n),

then these strategies are the unique Nash equilibrium of the game.

2. In the n-player normal-form game G = {S1, ..., Sn;u1, ..., un}, if the strategies

(s∗1, ..., s
∗
n) are a Nash equilibrium, then they survive iterated elimination of strictly

dominated strategies.

Note on Note that NE is stronger than IDSDS, actually, if we cannot eliminate strictly dominated

strategies, all strategy profiles survive the application of IDSDS (Felix, 2022, Lec. 3).

Proof We prove (2) by contradiction, assuming that (s∗1, ..., s∗n) is a NE, and there exists s∗i such
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4 Solution Concept 3: Nash Equilibrium

that s∗i is strictly dominated. Then it means s∗i is not best response and contradicts the definition

of NE. This proof actually shows that NE is stronger than iterated strict dominance equilibrium,

that is, every NE survives iterated elimination of strictly dominated strategies. (1) can be proved

by contradiction too. ■

Lemma 3.1
Rationalizability and iterated strict dominance coincide in two-player games.

Proof This is equivalent to show that

σi is strictly dominated ⇐⇒ σi is never a best response.

■

Note on With more than two players, the equivalence between being strictly dominated and

never a best response breaks down. The reason is that mixed strategies require that player’s

randomizations are independent. For example, D is not a best response to player 3, while it is

also not dominated.

L R

U 3 0

D 0 0

Figure 1: A

L R

U 0 3

D 3 0

Figure 2: B

L R

U 0 0

D 0 3

Figure 3: C

L R

U 2 0

D 0 2

Figure 4: D

4 Solution Concept 3: Nash Equilibrium

4.1 Nash Equilibrium

Definition 4.1 (Pure vs Mixed Nash Equilibrium)
A mixed-strategy profile σ∗ is a Nash equilibrium if, for all players i,

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i) ∀si ∈ Si.

A pure-strategy Nash equilibrium is a pure-strategy profile that satisfies the same condi-

tions.

Note on Pure strategy equilibria in OM papers Pure strategy equilibria is attractive in OM

papers for two reasons. First, the simplicity of their structure makes it possible to link them to

the actual behavior of the competing firms. Second, no firm has ex post regret after observing
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4 Solution Concept 3: Nash Equilibrium

the choice of the other firm. (Tirole, 1988)

Lemma 4.1 (NE as mutual best response)
An outcome (x∗1, ...x

∗
n) is a Nash equilibrium of the game if x∗i is a best response to x∗−i

for all i = 1, ..n.

Note on Computation This lemma can be used to find NE. For example in Matching pennies.

2

H T

1 H −1, 1 1,−1

T 1,−1 −1, 1

Suppose player 1 chooses H with probability r and T with 1− r, player 2 chooses H with q and

T with 1 − q. Then player 1’s expected utility is u1 = −(2q − 1)(2r − 1). And FOC implies

that ∂U1
∂r = −2(2q − 1): > 0 if q < 1

2 , = 0 if q = 1
2 , < 0 if q > 1

2 . Thus the best response

correspondence for player 1 and 2 are

β1(q) =


1 q < 1

2

[0, 1] q = 1
2

0 q > 1
2

β2(r) =


0 r < 1

2

[0, 1] r = 1
2

1 r > 1
2

β2(r)

0 1
2

1
r

1

q

β1(q)

0

1
2

1
r

1

q

β2(r)

β1(q)

0

q∗ = 1
2

1
r

1

q

r∗ = 1
2

Figure 5: MNE for Matching Pennies

Note on Mixed NE
1. A pure-strategy NE is a degenerate mixed-strategy NE, and there may exist no pure-

strategy NE. For example, there is only a unique mixed NE where both chooses Head with

probability 1/2.
Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

2. Mixed strategy means to randomize to confuse your opponent.

3. Mixed strategies are a concise description of what might happen in repeated (infinite) play.

4. Dominated strategies are never used in mixed Nash equilibria, even if they are dominated

by another mixed strategy.

Note on Infinite mixed NE There can be infinite mixed NE. For example, this game has two

pure NEs: (In, Accept) and (Out, Fight). When player 1 chooses Out, 2 is indifferent between

two strategies. Thus there is a continuum of mixed NE: player 1 chooses “Out”, while 2 chooses
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4 Solution Concept 3: Nash Equilibrium

“Fight” with a probability at least 1/3. Note that the pure NE (Out, Fight) belongs to this family

of mixed NE.

Accept Fight

Out 0, 4 0, 4

In 1, 2 −2, 1

Note on Condition In a Nash equilibrium,

1. Each player’s strategy is required to be optimal given his belief about other players’

strategies.

2. Each player’s belief about other players’ strategies is required to be correct.

The latter requirement is strong and somewhat unreasonable.

Note on Interpretation of mixed NE Mixed strategies can be viewed as pure strategies in a

perturbed game, and a mixed NE can be viewed as a steady state. A mixed strategy profile can

be viewed as players’ beliefs about each other’s strategic choices.

Note on Rationlizable in mixed NE (Li, 2022) Every strategy used with positive probability in

some mixed strategy NE is rationalizable.

Lemma 4.2 (Property of Mixed NE)
In a mixed-strategy NE, each player is indifferent among all those pure strategies that

he chooses with positive probability, that is, E[ui(si, p−i)] must be the same for all such

strategies.

Note on Interpretation and Proof This property can be directly seen and proved from Equa-

tion 2.

Note on Condition and Computation and Geometry Interpretation This property is very

useful to compute and find a mixed NE, however, we should pay attention to its condition of

positive probability. For those with zero probability, we do not require their expected payoff to

be the same. For example, if we denote the probability of L, M and R as q1, q2 and 1− q1 − q2,

and compute mixed NE by this property, then there is no mixed NE. The correct way to find mixed

NE is next verify the combinations {L,M}, {L,R} and {M,R}.

L M R

T 3, 4 1, 3 3, 0

B 0, 1 2, 3 0, 4

Lemma 4.3 (Oddness Theorem (Wilson 1971))
Almost every finite game has an odd number of NE’s in mixed strategies.

Note on Almost Actually, there is a counter example. This game has two pure NEs: (T,L) and

(B,R), but no mixed NE.
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4 Solution Concept 3: Nash Equilibrium

L R

T 1, 1 0, 0

B 0, 0 0, 0

Lemma 4.4 (Fixed points and NE)

Nash equilibrium must satisfy ∂πi
∂xi

= 0 for all player i, let fi(x1, ..xn) = ∂πi
∂xi

+ xi, then

we can find NE by fixed points theorem.

fi(x
∗
1, ..x

∗
n) = x∗i →

∂πi(x
∗
1, ...x

∗
n)

∂xi
= 0, ∀i

4.2 Existence of NE

Theorem 4.1 (Nash’s Theorem)
Every finite strategic-form game has a mixed-strategy equilibrium.

Note on Condition If the game is not finite, then the existence can not be guaranteed.

Proof P10 Li duozhe’s note. ■

Theorem 4.2 (Debreu 1952)
Consider a strategic-form game whose strategy spaces Si are nonempty compacta convex

subsets of an Euclidean space. If the payoff functions ui are continuous in s and quasi-

concave in si, there exists a pure-strategy Nash equilibrium.

aStrategy space is compact if it is closed and bounded

Corollary 4.1
Suppose that a game is symmetric, and for each player, the strategy space is compact

and convex and the payoff function is continuous and quasiconcave with respect to each

player’s own strategy. Then, there exists at least one symmetric pure strategy NE in the

game.

Theorem 4.3 (Glicksberg 1952)
Consider a strategic-form game whose strategy spaces Si are nonempty compact subsets

of a metric space. If the payoff functions ui are continuous then there exists a Nash

equilibrium in mixed strategies.

Note on Comparison Compared to Theorem 4.1, this theorem generalizes the condition to infinite

strategy space. Compared to Theorem 4.2, this theorem relaxes the condition of quasi-concavity,

however, this theorem does not guarantee that the NE is in pure strategies.
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4 Solution Concept 3: Nash Equilibrium

4.3 Uniqueness of NE

4.3.1 Contraction Mapping Argument

Definition 4.2 (Contraction Mapping Argument)
Mapping f(x) : Rn → Rn is a contraction iff ||f(x1) − f(x2)|| ≤ α||x1 −
x2|| ∀x1, x2, α < 1.

For example, in Figure 6, contraction mapping can derive a converged iterated series, which

satisfies |f ′(x)| < 1; otherwise, the series will not converge.

Figure 6: Converging (left) and diverging (right) iterations

Theorem 4.4 (contraction and NE)
If the best response mapping is a contraction on the entire strategy space, there is a unique

NE in the game.

Theorem 4.4 connects contraction mapping with NE, though not clarifies which type of

game satisfy the condition of contraction mapping. Suppose n players with strategy xi and BR

xi = fi(x−i), then define A as

A =


0 ∂f1

∂x2
... ∂f1

∂xn

∂f2
∂x1

0 ... ∂f2
∂xn

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... 0

 .

The spectral radius is defined as ρ(A) = {max |λ| : Ax = λx, x ̸= 0}.

Theorem 4.5 (spectral radius rule)
The mapping f(x) : Rn → Rn is a contraction if and only if ρ(A) < 1 everythere.

Note on Problems There are two problems of Theorem 4.5:

Eigenvalue is not easy to calculate, however, it is enough to verify ||A|| < 1 via the largest
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4 Solution Concept 3: Nash Equilibrium

eigenvalue, that is, ensure that the sum of every row or column is smaller than 1.
n∑

i=1

|∂fk
∂xi

| < 1 or
n∑

i=1

| ∂fi
∂xk

| < 1, ∀k

In the case of two players, the condition can be rewritten as

|∂f1
∂x2

| < 1 and |∂f2
∂x1

| < 1

BR is not easy to find sometimes. However, via the implicit function theorem, Theorem 4.5

can be rewritten as diagonal dominace, that is, every elements on the diagonal should be

greater than the sum of other elements in its row.
n∑

i=1,i ̸=k

| ∂2πk
∂xk∂xi

| < |∂
2πk
∂x2k

|, ∀k

4.3.2 Univalent Mapping Argument

Theorem 4.6 (univalent and unique)
Suppose the strategy space of the game is convex and all equilibria are interior. Then,

if the determinant |H| is negative quasidefinite (i.e. if the matrix H + HT is negative

definite) on the players’ strategy set, there is a unique NE.

Note on Note that the condition of univalent mapping argument is weaker than that of argument.

In the case of two players, this theorem can be rewritten as

| ∂2π2
∂x2∂x1

+
∂2π1

∂x1∂x2
| ≤ 2

√
∂2π1
∂x21

∂2π2
∂x22

, ∀x1, x2.

4.3.3 Index Theory Approach

Theorem 4.7 (index-theory and unique)
Suppose the strategy space of the game is convex and all payoff functions are quasiconcave.

Then, if (−1)n|H| is positive whenever ∂πi
∂xi

= 0, all i, there is a unique NE.

Note on Theorem 4.7 is also weaker than Theorem 4.4. However, Theorem 4.7 only requires the

condition holds at equilibrium. In case of two players, Theorem 4.7 can be rewritten as∣∣∣∣∣∣
∂2π1

∂x2
1

∂2π1
∂x1∂x2

∂2π2
∂x2∂x1

∂2π2

∂x2
2

∣∣∣∣∣∣ > 0, ∀x1, x2 :
∂π1
∂x1

= 0,
∂π2
∂x2

= 0

This can also be interpreted as that the product of the slopes of BR cannot be greater than

1, i.e.,
∂f1
∂x2

∂f2
∂x1

< 1 atx∗1, x
∗
2
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4 Solution Concept 3: Nash Equilibrium

4.4 Other properties of NE: Pareto optimality, Stability and Interiority

Definition 4.3 (Pareto frontier set)
The set of strategies such that each player can be made better off only if some other player

is made worse off.

Definition 4.4 (Pareto optimal and Pareto inferior)
A set of strategies is Pareto optimal if they are on the Pareto frontier, otherwise, a set of

strategies is Pareto inferior.

Definition 4.5 (stable equilibrium)
An equilibrium is considered stable (for simplicity we will consider asymptotic stability

only) if the system always returns to it after small disturbances. If the system moves away

from the equilibrium after small disturbances, then the equilibrium is unstable.

The sufficient condition for asymptotically stable is

|dr1
dq2

||dr2
dq1

| < 1 or
∂2u1
∂q1∂q2

∂2u2
∂q1∂q2

<
∂2u1
∂q21

∂2u2
∂q22

Note on For example, B, C and D are all intersects of BR, and thus all NE. However, C is not

stable, unless the status is C at the beginning, otherwise the status will move to B and D.

Figure 7: Example of stable and unstable NE
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5 Examples of finding NE

Definition 4.6 (Interior equilibrium and Boundary equilibrium)
Interior equilibrium is the one in which first-order conditions hold for each player. The

alternative is boundary equilibrium in which at least one of the players select the strategy

on the boundary of his strategy space.

5 Examples of finding NE

5.1 Hotelling Model

Consumers are uniformly distributed on [0, 1] and each consumer buy one product from the

closest vendor (minimizing transportation cost). Two vendors choose their locations simultane-

ously. In the unique Nash equilibrium, both vendors choose the midpoint of the boardwalk.

Note on Product differentiation In the competition for market share, product differentia-

tion is minimized in equilibrium. Similarly, in electoral competitions under bipartisan system,

candidates tend to propose similar policies or express similar views on sensitive issues.

Note on Multiple vendors No pure NE is found currently.

Note on Real examples This model can be used to capture many real examples: 1 tax rate; 2

coco percent of chocolate bar. Actually, location means market share here.

5.2 Cournot Model (Quantity Competition)

Two firms produce an identical product, and they set output levels (q1, q2) simultaneoulsy.

Total output is Q = q1 + q2, and the market clearing price is P = P (Q), each firm’s utility

is ui(q1, q2) = qiP (Q) − Ci(qi). Here we consider a special case where the inverse market

demand is linear p(Q) = a− bQ, and the cost functions are also linear, c(qi) = ciqi. This game

thus can solve by BR equations via FOC. For example,

β1(q2) =


a−c1
2b − q2

2 q2 ≤ a−c1
b

0 q2 >
a−c1
b

.

q1

q2
0

β2(q1)

β1(q2)
•

Figure 8: Case: c1 = c2

q1

q2
0

β2(q1)

β1(q2)

•

Figure 9: Case: c1 < c2

q1

q2
0

β2(q1)

β1(q2)

•

Figure 10: Corner Solution

IESDS. Cournot model can also be solved by iterated deletion of strictly dominated

strategies. We first define firm i’s best response function ri : [0,∞) → [0,∞), and by FOC we
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5 Examples of finding NE

have r(q−i) =
a−c
2b − q−i

2 . At the beginning of iteration, our strategy space is S0
i = [0,∞). In the

first period, any strategy above r(0) is strictly dominated for each firm, then the updated strategy

space is S1
i = [0, r(0)]. Similarly in the second period, any strategy below r(r(0)) = r2(0) is

strictly dominated, and our updated strategy space is S2
i = [r2(0), r(0)]. Following this track, it

converge to a−c
3b .

rn(0) = −a− c

b

n∑
k=1

(−1

2
)k

Multiple firms. When extending to n firms with linear inverse market demand, the NE is

q∗i = a−c
b(n+1) .

Corner Solution (Felix, 2022, Lec. 5). For example, in Figure 10, if a−c2
b < a−c1

2b , i.e.,

the vertical intercept of β1(q2) is greater than the horizontal intercept of β2(q1), then we have a

corner solution.

Substitution and Complementation. There are three firms, A, B and C, in the market, in

which A and B provides product 1, C provides product 2. d ∈ [−1, 1] denotes the relationship

between product 1 and 2, where d = 0 means no relationship, d = 1 means complement and

d = −1 means substitute. The margin cost are cA, cB, cC , and each firm decides the quantity

qA, qB, qC , the price function are

pi = A− qi − dqj , i, j = 1, 2

By FOC, we have,

q∗A(d) =
1

2
(cB − cA) +

2A− cA − cB − d(A− cC)

6− 2d2

q∗B(d) =
1

2
(cA − cB) +

2A− cA − cB − d(A− cC)

6− 2d2

q∗C(d) =
3(A− cC)− d(2A− cA − cB)

6− 2d2

5.3 Bertrand Model (Price Competition)

Firm 1 and 2 choose price p1 and p2, their demand functions are follows, where b > 0

reflects substitution. There are not fixed costs of production, and marginal costs are constant at

c < a. Finally we have p∗1 = p∗2 =
a+c
2−b .

qi (pi, pj) = a− pi + bpj

5.4 The Tragedy of the Commons

n farmers in a village chooses the number gi of goats. Assume that the margin costs for

each goat is c, and the value of each goat is v(G), where G = g1+ ...+ gn is the total number of

goats. Due to the limit of land resource, there exists Gmax : v(G) > 0 ∀G < Gmax, v(G) =

0 ∀G ≥ Gmax, and v′(G) < 0, v′′(G) < 0 ∀G < Gmax. The payoff function is

giv (g1 + · · ·+ gi−1 + gi + gi+1 + · · ·+ gn)− cgi.
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5 Examples of finding NE

Let G∗ denotes the total number in equilibrium when they make separate decisions, and

summarizing all FOC conditions, we have

v (G∗) +
1

n
G∗v′ (G∗)− c = 0.

However, the optimal quantity for the whole society GE < G∗.

v
(
GE

)
+GEv′

(
GE

)
− c = 0

5.5 A Model of Sales (Varian, 1980)

There are N firms and two types of consumers (informed I and uniformed U ) in the market,

and the population of consumers is 1 (I + U = 1). Saying that the willingness to pay v is the

same for all consumers, and firms do bertrand competition with marginal cost c. The payoff

function for firm i given charging pi ∈ [c, v] is the following, where k is the number of firms

charging the lowest price.

πi (pi, p−i) =

 (pi − c) U
N if pi > minj ̸=i pj

(pi − c)
(
U
N + l

k

)
if pi = minj ̸=i pj

Lemma 5.1
There is no pure Nash equilibrium in this game, and a unique symmetric equilibrium such

that
p̄(F ) = v

(p(F )− c)

(
U

N
+ I

)
= (v − c)

U

N

(p− c)

[
U

N
+ (1− F (p))n−1I

]
= (v − c)

U

N
, ∀p ∈ [p(F ), p̄(F )]

Here F (p), f means the cdf,pdf of strategy p and p̄ = inf{p | F (p) = 1}, p = sup{p |
F (p) = 0}. This MNE means

1. The highest possible price is v.

2. The lowest price give the same profit for highest price.

3. Charging any price in between gives the same profit.
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